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Abstract

Alzheimer’s disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory
during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data
such as predicting cognitive outcomes from MRI measures. Recently, multi-task based feature learning (MTFL) methods
with sparsity-inducing ¢ j-norm have been widely studied to select a discriminative feature subset from MRI features
by incorporating inherent correlations among multiple clinical cognitive measures. However, existing MTFL assumes the
correlation among all tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features
via sparsity-inducing regularizations that neglect the inherent structure of tasks and MRI features. To address this issue, we
proposed a fused group lasso regularization to model the underlying structures, involving 1) a graph structure within tasks
and 2) a group structure among the image features. To this end, we present a multi-task feature learning framework with
a mixed norm of fused group lasso and €2 j-norm to model these more flexible structures. For optimization, we employed
the alternating direction method of multipliers (ADMM) to efficiently solve the proposed non-smooth formulation. We
evaluated the performance of the proposed method using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets.
The experimental results demonstrate that incorporating the two prior structures with fused group lasso norm into the multi-
task feature learning can improve prediction performance over several competing methods, with estimated correlations of
cognitive functions and identification of cognition-relevant imaging markers that are clinically and biologically meaningful.
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Introduction

Alzheimer’s disease (AD) is the most common cause of
dementia, which mainly affects memory function, and pro-
gress ultimately culminate in a state of dementia where all
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cognitive functions are affected. The disease poses a serious
challenge to the aging society. The worldwide prevalence
of AD is predicted to quadruple from 46.8 million in 2016
(Alzheimer’s Association and et al. 2016) to 131.5 million
by 2050 according to ADI’s World Alzheimer Report
(Batsch and Mittelman 2015). Dementia also has a huge
economic impact. Today, the total estimated worldwide cost
of dementia of US is $818 billion, and it will achieve a
trillion dollar disease by 2018.

Predicting cognitive performance of subjects from neu-
roimaging measures and identifying relevant imaging bio-
markers are important focuses of the study of Alzheimer’s
disease. Magnetic resonance imaging (MRI) allows the
direct observation of brain changes such as cerebral atrophy
or ventricular expansion (Castellani et al. 2010). Previ-
ous work showed that brain atrophy detected by MRI is
correlated with neuropsychological deficits (Frisoni et al.
2010). The relationships between commonly used cognitive
measures and structural changes detected by MRI have been
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previously studied using regression models. Many analy-
ses have demonstrated a relationship between baseline MRI
features and cognitive measures. The most commonly used
cognitive measures are the Alzheimer’s Disease Assessment
Scale cognitive total score (ADAS), the Mini Mental State
Exam score (MMSE), and the Rey Auditory Verbal Learn-
ing Test (RAVLT). ADAS is the gold standard in AD drug
trials for cognitive function assessment, and is the most
popular cognitive testing instrument to measure the severity
of the most important symptoms of AD. MMSE mea-
sures cognitive impairment, including orientation to time
and place, attention and calculation, immediate and delayed
recall of words, language and visuo-constructional func-
tions. RAVLT measures episodic memory and is used for
the diagnosis of memory disturbances, including eight recall
trials and a recognition test.

Early studies focused on traditional regression models
to predict cognitive outcomes one at a time. To achieve
more appropriate predictive models of performance and
identify relevant imaging biomarkers, many previous works
formulated the prediction of multiple cognitive outcomes
as a multi-task learning problem and developed regularized
multi-task learning methods to model disease cognitive out-
comes (Wan et al. 2012, 2014; Zhou et al. 2013; Wang
et al. 2012). Multi-task learning (MTL) (Caruana 1998)
describes a learning paradigm that seeks to improve the gen-
eralization performance of a learning task with the help of
other related tasks. The fundamental hypothesis of the MTL
methods is to assume that if tasks are related then learn-
ing of one task can benefit from the learning of other tasks.
Learning multiple related tasks simultaneously has been
theoretically and empirically shown to significantly improve
performance. The key of MTL is how to exploit correlation
among tasks via an appropriate shared representation. Two
popular shared representations to model task relatedness are
model parameter sharing (Argyriou et al. 2008; Jebara 2011)
and feature representation sharing (Evgeniou and learning
2004; Yu et al. 2005; Xue et al. 2007). There are inherent
correlations among different cognitive scores. Therefore,
the prediction of different types of cognitive scores can be
modeled as an MTL formulation, and the tasks are related
in the sense that they all share a small set of features, which
is multi-task feature learning (MTFL) problem. To solve
MTFL problems, regularization has been introduced to
produce better performance than traditional solution using
single-task learning. The most commonly used regulariza-
tion is £ 1-norm (Liu et al. 2009), which is employed to
extract features that impact all or most clinical scores, since
the assumption is that a given imaging marker can affect
multiple cognitive scores and only a subset of brain regions
(region-of-interest, ROI) are relevant. (Wang et al. 2011)
and (Zhang and Yeung 2012a) employed multi-task feature
learning strategies to select biomarkers that could predict
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multiple clinical scores. Specifically, (Wang et al. 2011)
employed an £;-norm regularizer to impose sparsity among
all elements and proposed the use of a combined ¢ 1-
norm and £1-norm regularizations to select features. (Zhang
et al. 2012) proposed a multi-task learning with £ j-norm
to select a common subset of relevant features for multiple
variables from each modality.

A major limitation of existing MTFL methods is that
complex relationships among imaging markers and among
cognitive outcomes are often ignored. The correlating of
multiple prediction models assumes that all tasks shared
the same feature subset. This is not a realistic assumption,
since it treats all cognitive outcomes (response) and
MRI features (predictors) equally and neglects underlying
correlations between the cognitive tasks and structure within
MRI features. Specifically, 1) for the cognitive outcomes,
each assessment typically yields multiple evaluation scores
from a set of relevant cognitive tasks, and thus these
scores are inherently correlated. An example would be
the scores of TOTAL and TOT6 in the RAVLT. Different
assessments can evaluate different cognitive functions,
resulting in low correlation and preferring different brain
regions. For example, the tasks in TRAILS aim to test
a combination of visual, motor, and executive functions,
while the set of RAVLT aims testing of verbal learning
memory. It is reasonable to assume that correlations
among tasks are not equal, and some tasks may be more
closely related than others in assessment tests of cognitive
outcomes. 2) On the other hand, for MRI data, many MRI
features are interrelated and together reveal brain cognitive
functions (Yan et al. 2015). In our data, multiple shape
measures (volume, area, and thickness) from the same
region provide a comprehensively quantitative evaluation of
cortical atrophy, and tend to be selected together as joint
predictors. Our previous study proposed a model in which
prior knowledge guided multi-task feature learning model.
Using group information to enforce intra-group similarity
has been demonstrated to be an effective approach (Liu et al.
2017). Overall, it is important to explore and utilize such
interrelated structures and select important and structurally
correlated features together.

To address these model limitations, we designed a
novel multi-task feature learning that models a common
representation with respect to MRI features across tasks
as well as the local task structure with respect to brain
regions. Specifically, we designed novel mixed structured
sparsity norms, called fused group lasso, to capture the
underlying structures at the level of tasks and features.
This regularizer is based on the natural assumption that if
some tasks are correlated, they should have a small similar
weight vector and similar selected brain regions. It penalizes
differences between prediction models of highly correlated
tasks, and encourages similarity in the selected features
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of highly correlated tasks. To discover such dependent
structures among the cognitive outcomes, we employed the
Pearson correlation coefficient to uncover the interrelations
among cognitive measures and estimated the correlation
matrix of all tasks. In our work, all the cognitive measures
(20 in total) in the ADNI dataset were used to exploit the
relationship. To the best of our knowledge, our approach
is the first work to analyze all cognitive measures in the
ADNI dataset and their relationships. With estimated task
correlation, we employ the idea of fused lasso to capture
the dependence of response variables. At the same time,
taking into account the group structure among predictors,
prior group information is incorporated into the fused lasso
norm, promoting intra-group similarity with group sparsity.
By incorporated fused group lasso into the MTFL model,
we can better understand the underlying associations of
prediction tasks of cognitive measures, allowing more stable
identification of cognition-relevant imaging markers. The
resulting formulation is challenging to solve due to the use
of non-smooth penalties including the fused group lasso and
the ¢ 1-norm. An effective ADMM algorithm is proposed
to tackle the complex non-smoothness.

Through empirical evaluation and comparison with
different baseline methods and recently developed MTL
methods using data from ADNI, we illustrate that the pro-
posed FGL-MTFL method outperforms other methods.
Improvements are statistically significant for most scores
(tasks). The results demonstrate that incorporation of the
fused group lasso into the traditional MTFL formulation
improves predictive performance relative to traditional
machine learning methods. We discuss the most prominent
ROIs and task correlations identified by FGL-MTFL. We
found that the results corroborate previous studies in neu-
roscience. Our previous works also formulate prediction
tasks with a multi-task learning scheme. The algorithm
SMKMTL (Sparse multi-kernel based multi-task learning)
in (Cao et al. 2017) exploits a nonlinear prediction model
based on multi-kernel learning. However, it assumes that
correlations among tasks are equal and the features are inde-
pendent. Although the GSGL-MTL (Group-guided Sparse
Group Lasso regularized multi-task learning) algorithm (Liu
et al. 2017) exploits the group structure of features by
incorporating a priori group information, it does not con-
sider the complex relationships among cognitive outcomes.

The rest of the paper is organized as follows. In
“Preliminary Methodology”, we provide a description of the
preliminary methodology: multi-task learning (MTL), £7 1-
norm, group lasso norm, and fused lasso norm. A detailed
mathematical formulation and optimization of FGL-MTFL
is provided in “Fused Group Lasso Regularized Multi-Task
Feature Learning, FGL-MTFL”. In “Experimental Results
and Discussions”, we present the experimental results and
evaluate the performance of FGL-MTFL using data from

the ADNI-1 dataset. The conclusions are presented in
“Conclusion”.

Preliminary Methodology
Multi-Task Learning

Consider a multi-task learning (MTL) setting with & tasks.
Let p be the number of covariates, shared across all the
tasks, and let n be the number of samples. Let X € R"*?
denote the matrix of covariates, ¥ € R"** be the matrix
of responses with each row corresponding to a sample,
and ©® € RP*k denote the parameter matrix, with column
Om € RP corresponding to task m, m = 1, ..., k, and row
0;. € RF corresponding to feature j, j = 1,..., p. The
MTL problem can be constructed by estimating the param-
eters based on suitable regularized loss function. In order
effectively to associate imaging markers and cognitive mea-
sures, the MTL model minimizes the following objective:

min L(Y,X,0)+ AR(O), €))]
@ERI’X"
where L(-) denotes the loss function and R(-) is the
regularizer. In the current context, we assume the loss to be
the square loss, i.e.,

n
LY, X,0) =Y —=XO|% =) _llyi — %03, )

i=1

where y; € Rk x; € R'*P are the i-th rows of Y, X,
respectively corresponding to the multi-task response and
covariates for the i-th sample. We note that the MTL frame-
work can be easily extended to other loss functions. Clearly,
different choices of the penalty R(®) may present quite dif-
ferent multi-task methods. Using some prior knowledge, we
then add penalty R(®) to encode relatedness among tasks.

£3,1-norm

One appealing property of the ¢, j-norm regularization is
that it encourages multiple predictors from different tasks to
share similar parameter sparsity patterns. The MTFL model
via the €5 1-norm regularization considers

P
1©ll2.1 =Y _116;.1I2 . 3)
j=1

and is suitable for the simultaneous prioritization of sparsity
over features for all tasks.

The key point of Eq. 3 is the use of £;-norm for 6,
which forces grouping of the weights corresponding to the
Jj-th feature across multiple tasks and tends to select features
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based on the joint strength of k tasks jointly (See Fig. 1a).
There is a correlation among multiple cognitive tests. A
relevant imaging predictor typically may have more or less
influence on all these scores, and it is possible that only a
subset of brain regions are relevant to each assessment. By
employing MTFL, the correlation among different tasks can
be incorporated into the model to build a more appropriate
predictive model and identify a subset of features. The rows
of ® are equally treated in MTFL, which implies that the
underlying structures among predictors are ignored.

Gy,1-norm

Despite the above achievements, few regression models
take into account the covariance structure among predictors.
To achieve a certain function, brain imaging measures are
often correlated with each other. For MRI data, groups

correspond to specific regions-of-interest (ROIs) in the
brain, e.g., entorhinal and hippocampus. Individual features
are the specific properties of those regions, e.g., cortical
volume and thickness. In this study, for each region (group),
multiple features were extracted to measure the atrophy
information of each ROI involving cortical thickness,
surface area, and volume from gray matter and white matter.
Multiple shape measures from the same region provide a
comprehensively quantitative evaluation of cortical atrophy,
and tend to be selected together as joint predictors.

We assume the p covariates to be divided into g disjoint
groups G¢, £ = 1,...,g, with each group including v,
covariates respectively. In the context of AD, each group
corresponds to a region-of-interest (ROI) in the brain, and
the covariates in each group correspond to specific features
of that region. For AD, the number of features in each
group, vy, is 1 or 4, and the number of groups g can be in
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Fig. 1 The illustration of three different regularizations. Each col-
umn of ® is corresponding to a single task and each row represents
a feature dimension. The MRI features in each region belong to a
group. We assume the p features to be divided into g disjoint groups
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Ge, £ =1,..., g, with each group having v, features respectively. For
each element in ®, white color means zero-valued elements and color
indicates non-zero values
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the hundreds. We then introduce a G, |-norm according to
the relationship between brain regions (ROIs) and cognitive
tasks, and encourage a task-specific subset of ROIs (See
Fig. 1b). The G, 1-norm ||® ||, , is defined as:

g k
1®llGy, =Y > wellfg,mll2 - )

{=1m=1

where w, = ,/v¢ is the weight for each group and 6g, ,, €
RY¢ is the coefficient vector for group Gy and task m.

Fused Lasso

Fused lasso is one of these variants, where pairwise
differences between variables are penalized using the ¢;
norm, which results in successive variables being similar.
The Fused lasso norm is defined as:

k—1
11O =" 10m — Omral (5)

m=1

where H is a (k — 1) x k sparse matrix with H,, ,, = 1, and
Hm,erl = -1

It encourages 6, and 6,41 to take the same value
by shrinking the difference between them toward zero.
This approach has been employed to incorporate temporal
smoothness to model disease progression. In longitudinal
model, it is assumed that the difference of the cognitive
scores between two successive time points is relatively
small.
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Fused Group Lasso Regularized Multi-Task
Feature Learning, FGL-MTFL

Formulation

There are two limitations of traditional MTFL. When
regularized by the £, ;-norm in Eq. 3, sparsity is achieved
by treating each task equally, which ignores the underlying
structures among predictors. On the other hand, for some
highly correlated features, the traditional MTFL tends to
identify one and ignore the others, which was inadequate
for yielding a biologically meaningful interpretation. Our
previous work exploited relationships of features in the
learning procedure, which motivated us to consider the
underlying structure of these relationships. To address the
limitations of MTFL with ¢ ;-norm, we consider the
structure of task and features instead of assuming that all
tasks have similar weights and commonly selected features.
More specifically, we propose a new regularization for
multi-task feature learning, called the fused group lasso.
The underlying idea is that if tasks are highly correlated
according to the task interrelations, the tasks are supposed to
share common brain regions, but tasks with low correlation
are more likely to have different brain regions.

To model the task-feature relationships, we first construct
a graph G to model the task correlation, as shown in Fig. 2
(left). Let G = (V, E) be an undirected graph where V
represents the set of vertices and E is the set of edges. Each
task is treated as a graph node, and each edge (pairwise link)
em.1(m,l) € E in G corresponds to an edge from the m-
th task to the [-th task, and |r,, ;| encodes the strength of
the relationship between the m-th task and the /-th task. In
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Fig. 2 The illustration of the FGL-MTFL method. The method
involves two steps: 1) estimation of task correlation and construct an
undirected graph (Left); and 2) joint learning of all regression models

in a fused group lasso regularized multi-task feature learning (FGL-
MTFL) formulation based on the estimated correlation matrix (Right)
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this model, we adopt a simple and commonly-used approach
to infer G from data. In this approach, we first compute
pairwise Pearson correlation coefficients for each pair of
tasks, and then connect two nodes with an edge only if their
correlation coefficient is above a given threshold 7.

Brain imaging measures are often correlated with each
other, so incorporation of the covariance of MRI features
can improve the performance of traditional MTL methods.
Thus, to identify biologically meaningful markers, we
utilize prior knowledge of interrelated structure to group
related features together to guide the learning process. The
benefit of this strategy was also revealed in our previous
work (Liu et al. 2017) , in which we proposed a group
lasso multi-task learning algorithm that explicitly models
the correlation structure within features, and achieved good
performance in the prediction of cognitive scores from
imaging measures.

Once the graph of task correlation G is constructed, we
then integrate the group structure of features into the fused
lasso norm and propose a new fused group lasso regularized
multi-task feature learning (FGL-MTFL) model as follows.

1 2
min —[[Y = XO|f + 2110021 +42 Y rmll0m
(m,l)eE

—sign(rm, )01l G, » (6)

where |r;;, ;| indicates the strength weight of the correlation
between two tasks connected by an edge, A1 and A rep-
resent regularization parameters that determine the amount
of two separate penalties. In the new fused group lasso
norm, if the two tasks m and [ are highly correlated, the
difference between the two corresponding regression coef-
ficients 6, and 6; will be penalized more than differences
for other pairs of tasks with weaker correlation. The regular-
ization tends to flatten the values of regression coefficients
for each feature across multiple highly correlated tasks, so
that the strength of the influence of each task becomes
more similar across those tasks.

The FGL-MTFL model includes two regularization
processes: (1) all tasks are regularized by the ¢ -
norm regularizer, which captures global relationships by
encouraging multiple predictors across tasks to share similar
parameter sparsity patterns. This ensures that a small subset
of features will be selected for all regression models
from a global perspective. (2) Two local structures (graph
structures within tasks and group structures within features)
are considered from a local perspective by the proposed
fused group lasso (FGL) regularizer, which combines two
structured sparsity regularizers (fused lasso and group lasso)
to capture the specific task-ROI specific structures. This
encourages the matching of related tasks to similar selected
brain regions.

@ Springer

This new model not only preserves the strength of £ 1-
norm to require similarity across multiple scores from a
cognitive test, but also considers the complex graph struc-
ture among responses and the interrelated group structure
of imaging predictors. To the best of our knowledge, no
sparsity-based algorithm has been described that includes
both global and local task correlation for the prediction
of cognitive outcomes in AD.

We used a symmetric correlation matrix D e RK*K
to describe the correlation in the fusion penalty, which is
defined as:

_rm,l (msl) € Evm #l

k
Dy = m;lrm,zl (m,)e E;m=1 o
m#l
0 otherwise.
where m,l = 1,2,...,k. We normalize the matrix by «,

which is the number of edges in E, defined as Z = (1/«)D.
Then the formulation can be written into the following
matrix form:

1
min S{|¥ — XOl7 +2l0l21 + 2201026, » ®)

The framework of the proposed method is illustrated in
Fig. 2.

Efficient Optimization for FGL-MTFL
ADMM

In recent years, ADMM has become popular since it is often
easy to parallelize distributed convex problems. In ADMM,
the solutions to small local subproblems are coordinated to
identify the globally optimal solution (Boyd et al. 2011).

rilizn f&x)+g@)
s.t. Ax + Bz = c.

The variant augmented Largrangian of ADMM method
is formulated as follows:

Ly(x,z,u) = f(x)+g() +u’ (Ax + Bz — ¢)
+§||Ax + Bz —c|?

where f and g are convex functions, and variables A €
RP*" x € R", B € RP*™ 7z € R™ ¢ € RP. u is a scaled
dual augmented Lagrangian multiplier, and p is a non-
negative penalty parameter. In each iteration of ADMM, this
problem is solved by alternating minimization L, (x, z, u)
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over x, z, and u. At the (k + 1)-th iteration, the update of
ADMM is carried out by:

= argminL , (x,zk,uk>
X

= argminL, (xk+1, Z, uk)
Z

uk L uk+p<Axk+l 4 Bkt _c)
Efficient Optimization for FGL-MTFL

We developed an efficient ADMM-based algorithm to solve
the objective function in Eq. 8, which is equivalent to the
following constrained optimization problem:

1
in —|Y — XO|% + A A2l S

@%‘?Sz” Iz +21l1Qll2,1 + 2201SlG,

st®—0=0 BZ—-5=0, 9)

where Q, S are slack variables. Then Eq. 9 can be solved by
ADMM. The augmented Lagrangian is

1
Ly(©,0,8,U,V) = EIIY—X®|I%+MIIQII2,1

o
+32lSllg, + (U, © = 0) + 210
—QI>+(V,0Z-)

+§||®z — 8|2, (10)

where U and V are augmented Lagrangian multipliers.
Update ®: From the augmented Lagrangian in Eq. 10,
the update of ® at (+ + 1)-th iteration is carried out by:

1
0D = argminz |I¥ — X6} + (U(’), ®

_ Q(r)>+§ o— Q(I)HZ

+ (v, 0z-s0)+ 2 oz - s© ’
’ 2

an

which is the closed form and can be derived by setting
Eq. 11 to zero.

0=—XT(¥—X0)+U" +p (@ - Q<’>) +vz

+p (@Z - S(’)) z (12)

Note that Z is a symmetric matrix. We define ® = ZZ,
where @ is also a symmetric matrix with ®,, ; denoting the
value of weight (m, [). With this linearization, the value for
® can be updated in parallel by the individual 6,,. Thus

in the (¢ + 1)-th iteration, 9.%“) can be updated efficiently
using Cholesky factorization.

0 = X" (v = X6,) + ) + 0 (0.0 — a3)

k
I O S
m=1

m#l
k
+p0 cIDrrt,me.m - Zcbm,le.[
m=1
m#£l
k
= [ s = 2 Zms)” (13)
m=1

m#~l
The above optimization problem is quadratic. The
optimal solution is given by G.E,ZH) =F, lbf,?, where

Fn = XTX +;0(1 + cI)m,m)]

k
b,(f,) = XTym — u(fn) — v(,’n) - ZZm,lU,(;) + qu.(}’il)
m=1

m#l

k k
+o |58 =3 ZuusP | +0> Omibs. (14
m=1 m=1

m#l m#l

The computation of Q_E;H) involves solving a linear

system, which is the most time-consuming part of the whole
algorithm. To efficiently compute 9.(,,11“) efficiently, we can
compute the Cholesky factorization of F' at the beginning of
the algorithm:

Fp=AL A, . (15)

Note that F is a constant and positive definite matrix.
Using Cholesky factorization, we only need to solve the
following two linear systems for each iteration:

AT, =b", A0, =0, . (16)

Since A,, is an upper triangular matrix, it is very efficient
to solve these two linear systems.

Update Q: The update for Q effectively needs to solve
the following problem

P 2
Q(H-l) = argmén 5 HQ - @)(I—H)H + 2111Ql2.1

—<U(t), Q> , 17)

which is equivalent to the following problem:

M !
Q(Hl):arngm {?IIQHZ,I + §||Q - 0<z+1)||2} . (18)
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where OU+D = @U+D %U(’). It is clear that Eq. 18 can
be decoupled into

g = argmin ¢ (g:)

|1 1
= argmin {Enqz-. oV 4 M ||q, ||} (19)
where ¢;. and o;. are the i-th row of Q(H‘l) and O+,
respectively. Since ¢(g;.) is strictly convex, we conclude
that q(’H) is its unique minimizer. Then we introduce the
following lemma (Liu et al. 2009) to solve the Eq. 19.

Lemma 1 For any A1 > 0, we have

A
max {llor 2 = 20|
qi. = 0i.,

(20)
lloi.ll2

Update S: The update for S effectively needs to solve
the following problem

2
U+l argmsjn g ”S — ®(I+I)ZH + A2llSl6,,
—<v<”,S) :

which is effectively equivalent to computation of the
proximal operator for G, -norm. In particular, the problem
can be written as

2y

S !
S(t+1) = argmsm {?”S“GZ,I + 5"5 - H(H_l)“z} -

where IT¢+D = @“*”Z—i—%V(’). Since the groups Gy used
in our work are disjointed, the Eq. 22 can be decoupled into

1
sg[; ) = arg min ¢ (sg,m)

SGym
= arg min l||s - 7T(t+l)|| + ||S l
& SGym 2 Gum Gim gim

(23)

where 5g,,, 7TG,m are rows in group G, for task m of st+h
and TT¢*D | respectively. Then we introduce the following
lemma (Yuan et al. 2013).

Lemma 2 For any A, > 0, we have

A
max {17, 2 — 22, 0}

l7TGomll2

SGom = TGym » (24)

Dual Update for U and V: Following standard ADMM
dual update, the update for the dual variables according to
our setting is as follows:

U(H—l) U(t) +p(®(l‘+1) _ Q(H—l))
yerh — y@ 4 p@t+h z — gttty

(25a)
(25b)

The dual updates can be performed in an element-
wise parallel manner. Algorithm 1 summarizes the whole
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algorithm. The MATLAB codes of the proposed algorithm
are available at: https://bitbucket.org/XIAOLILIU/fgl-mtfl.

Algorithm 1 ADMM optimization of FGL-MTFL

Require: X, Y, A1, A2, p, E.
Ensure: ©.

1: Initialization: ®©@ <« 0,

0, U9 «—0, vO 0.

2: Compute the Cholesky factorization of F.

3: repeat

4: Update ©+1 according to Eq. (11).

5 Update QU+ according to Eq. (17).
6: Update U+ according to Eq. (21).
7
8

«~ 0, SO

0 (O]

Update UGHD | v6+D according to Eq. (25).
: until Convergence.

Convergence

The convergence of the Algorithm 1 is shown in the
following theorem

Theorem 3 Suppose there exists at least one solution ®* of
Eq. 8. Assume L(®) is convex, .1 > 0, Ay > 0. Then the
following property for FGL-MTFL iteration in Algorithm 1
holds:

lim L(O©®) + i, H@m H + H@“)z‘
t—00 2.1

Gaq
= LO) + 1 0%, + 22 |0°2] (26)
Furthermore,
lim |0© —e*| =0 @D
11— o0

whenever Eq. 8 has a unique solution.

Note that the condition that allowed convergence in
Theorem 3 is quite easy to satisfy. A1, Ay are regularization
parameters and should always be larger than zero. The
detailed proof is discussed in (Cai et al. 2009). Unlike Cai
et al., we do not require L(®) to be differentiable, and
explicitly treat the non-differentiability of L(®) by using its
subgradient vector dL(®), similar to the strategy used by
(Ye and Xie 2011).

Experimental Results and Discussions

In this section, we present experimental results to demon-
strate the effectiveness of the proposed FGL-MTFL
to characterize AD progression using a dataset from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
(Weiner et al. 2010).


https://bitbucket.org/XIAOLILIU/fgl-mtfl
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Experimental Setup

MR images and data used in this work were obtained from
the Alzheimers Disease Neuroimaging Initiative (ADNI)
database (adni.loni.ucla.edu) (Weiner et al. 2010). The pri-
mary goal of ADNI is to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychologi-
cal assessments can be combined to measure the progression
of MCI and early AD. Approaches to characterize AD pro-
gression will help researchers and clinicians develop new
treatments and monitor their effectiveness. Further, a bet-
ter understanding of disease progression will increase the
safety and efficacy of drug development and potentially
decrease the time and cost of clinical trails. In ADNI, all
participants received 1.5 Tesla (T) structural MRI. The MRI
features used in our experiments are based on imaging data
from the ADNI database processed by a team from UCSF
(University of California at San Francisco), who performed
cortical reconstruction and volumetric segmentations with
the FreeSurfer image analysis suite (http://surfer.nmr.mgh.
harvard.edu/) according to the atlas generated in (Desikan
et al. 2006). The FreeSurfer software was employed to auto-
matically label the cortical and subcortical tissue classes for
the structural MRI scan of each subject and to extract thick-
ness measures of the cortical regions of interests (ROIs) and
volume measures of cortical and subcortical regions.

Briefly, this processing includes motion correction
and the averaging (Reuter et al. 2010) of multiple
volumetric T1-weighted images (when more than one is
available), removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (Segonne et al.
2004), automated Talairach transformation, segmentation
of the subcortical white matter and deep gray matter
volumetric structures (including hippocampus, amygdala,
caudate, putamen, and ventricles) (Fischl et al. 2002, 2004),
intensity normalization (Sled et al. 1998), tessellation of
the gray matter white matter boundary, automated topology
correction (Fischl et al. 2001; Ségonne et al. 2007),
and surface deformation following intensity gradients to
optimally place the gray/white and gray/cerebrospinal fluid
borders at the location where the greatest shift in intensity
defines the transition to the other tissue class (Dale et al.
1999; Dale and Sereno 1993).

In total, 48 cortical regions and 44 subcortical regions
were generated, , with typically 1 or 4 features in each
group. The names of the cortical and subcortical regions
are listed in Tables 1 and 2. For each cortical region,
the cortical thickness average (TA), standard deviation of
thickness (TS), surface area (SA), and cortical volume (CV)
were calculated as features. For each subcortical region,
the subcortical volume was calculated as a feature. The
separate SA values for the left and right hemisphere and
the total intracranial volume (ICV) were also included.

Table 1 Cortical features from the following 71 (= 35 x 2+ 1) cortical
regions generated by FreeSurfer

ID ROI name Laterality  Type

1 Banks superior temporal sulcus L, R CV,SA, TA, TS
2 Caudal anterior cingulate cortex L, R CV, SA, TA, TS
3 Caudal middle frontal gyrus L,R CV,SA, TA, TS
4 Cuneus cortex L,R CV,SA, TA, TS
5 Entorhinal cortex L,R CV, SA, TA, TS
6 Frontal pole L,R CV,SA, TA, TS
7 Fusiform gyrus L, R CV,SA, TA, TS
8 Inferior parietal cortex L,R CV, SA, TA, TS
9 Inferior temporal gyrus L,R CV, SA, TA, TS
10 Insula L,R CV, SA, TA, TS
11 IsthmusCingulate L,R CV,SA, TA, TS
12 Lateral occipital cortex L,R CV, SA, TA, TS
13 Lateral orbital frontal cortex L,R CV, SA, TA, TS
14 Lingual gyrus L,R CV, SA, TA, TS
15 Medial orbital frontal cortex L,R CV, SA, TA, TS
16  Middle temporal gyrus L,R CV, SA, TA, TS
17  Paracentral lobule L,R CV, SA, TA, TS
18  Parahippocampal gyrus L,R CV,SA, TA, TS
19  Pars opercularis L,R CV, SA, TA, TS
20  Pars orbitalis L,R CV, SA, TA, TS
21  Pars triangularis L,R CV, SA, TA, TS
22 Pericalcarine cortex L,R CV, SA, TA, TS
23 Postcentral gyrus L,R CV, SA, TA, TS
24 Posterior cingulate cortex L,R CV, SA, TA, TS
25  Precentral gyrus L,R CV, SA, TA, TS
26  Precuneus cortex L,R CV, SA, TA, TS
27  Rostral anterior cingulate cortex L, R CV, SA, TA, TS
28  Rostral middle frontal gyrus L,R CV, SA, TA, TS
29  Superior frontal gyrus L,R CV, SA, TA, TS
30  Superior parietal cortex L,R CV, SA, TA, TS
31  Superior temporal gyrus L,R CV, SA, TA, TS
32 Supramarginal gyrus L,R CV, SA, TA, TS
33  Temporal pole L,R CV, SA, TA, TS
34  Transverse temporal cortex L,R CV, SA, TA, TS
35 Hemisphere L,R SA

36 Total intracranial volume Bilateral Ccv

275 (= 34 x 2 x4+ 1 x 2 x 1+ 1) cortical features calculated
were analyzed in this study. Laterality indicates different feature types
calculated for L (left hemisphere), R (right hemisphere) or Bilateral
(whole hemisphere)

This yielded a total of p = 319 MRI features extracted
from cortical/subcortical ROIs in each hemisphere (Tables 1
and 2). Details of the analysis procedure are available at
http://adni.loni.ucla.edu/research/mri-post-processing/.
The ADNI project is a longitudinal study, with data
collected repeatedly over a 6-month or 1-year interval. The
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Table 2 Subcortical features from the following 44 (= 16 x 2 4 12)
subcortical regions generated by FreeSurfer

number ROI Laterality Type
1 Accumbens area L,R SV
2 Amygdala L,R SV
3 Caudate L,R SV
4 Cerebellum cortex L,R SV
5 Cerebellum white matter L,R SV
6 Cerebral cortex L,R SV
7 Cerebral white matter L,R SV
8 Choroid plexus L,R SV
9 Hippocampus L,R SV
10 Inferior lateral ventricle L,R SV
11 Lateral ventricle L,R SV
12 Pallidum L,R NY%
13 Putamen L,R SV
14 Thalamus L,R SV
15 Ventricle diencephalon L,R NY%

16 Vessel L,R SV
17 Brain stem Bilateral SV
18 Corpus callosum anterior Bilateral MY
19 Corpus callosum central Bilateral MY
20 Corpus callosum middle anterior Bilateral NY%
21 Corpus callosum middle posterior Bilateral NY%
22 Corpus callosum posterior Bilateral MY
23 Cerebrospinal fluid Bilateral NY%
24 Fourth ventricle Bilateral SV
25 Non white matter hypointensities Bilateral NY%
26 Optic chiasm Bilateral MY
27 Third ventricle Bilateral SV
28 White matter hypointensities Bilateral MY

44 subcortical features calculated were analyzed in this study.
Laterality indicates different feature types calculated for L (left
hemisphere), R (right hemisphere) or Bilateral (whole hemisphere)

scheduled screening date for subjects becomes baseline
after approval and the time point for the follow-up visits is
denoted by the duration starting from the baseline. In our
current work, we investigated the prediction performance of
our method to infer cognitive outcomes based on a number
of neuropsychological assessments at the time of the initial
baseline. In this work, we further performed the following
preprocessing steps:

— remove features with more than 10% missing entries
(for all patients and all time points);

— remove the ROI whose name is ‘“unknown;

— remove the instances with missing value of cognitive
scores;

— exclude patients without baseline MRI records;

— complete the missing entries using the average value.

@ Springer

This yields a total of n = 788 subjects, who were
then categorized into three baseline diagnostic groups:
Cognitively Normal (CN, n; = 225), Mild Cognitive
Impairment (MCI, ny, = 390), and Alzheimer’s Disease
(AD, n3 = 173). Table 3 lists the demographics information
of all subjects, including age, gender, and education. We
used 10-fold cross validation to evaluate our model and
conducted the comparison. In each of ten trials, a 5-
fold nested cross validation procedure was employed to
tune the regularization parameters. The data were z-scored
before applying the regression methods. The range of each
parameter varied from 10~' to 10°. The average (avg)
and standard deviation (std) of performance measures were
calculated and shown as avg + std for each experiment.
For each run, all methods received exactly the same train
and test set. The reported results are the best results of
each method with the optimal parameters. For predictive
modeling, all the cognitive assessments (a total of 20 tasks)
in Table 4 were examined. To the best of our knowledge, no
previous works have used all the cognitive scores to train
and evaluate their MTL models.

For the quantitative performance evaluation, we
employed the metrics of Correlation Coefficient (CC) and
Root Mean Squared Error (rMSE) between the predicted
clinical scores and the target clinical scores for each regres-
sion task. To evaluate the overall performance for all tasks,
the normalized mean squared error (nMSE) (Argyriou et al.
2008; Zhou et al. 2013) and weighted R-value (wR) (Ston-
nington et al. 2010) were used. The rMSE, CC, nMSE and
wR are defined as follows:

A2
iMSE (v, §) = ly=51 (28)
Corr (y, §) = V09 29)
’ o(y)o (@)

where y is the ground truth of the target at a single
task and y is the corresponding prediction according to
a prediction model, cov is the covariance, and o is the
standard deviation.

S 1Y =75 13

s h=1""o6(Y,)

nMSE (Y, Y) = o0 (30)
h=1"th

Table 3 Summary of ADNI dataset and subject information

Category CN MCI AD

Number 225 390 173

Gender (M/F) 116/109 252/138 88/85

Age (y, ag & sd) 7587 £5.04 74775 +£739 75424725

Education (y, ag +=sd) 16.03 £2.85 15.67 £2.95 14.65+3.17

M, male; F, female; y, years; ag, average; sd, standard deviation
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Table 4 Description of the

Description

cognitive scores considered in Num Score name
the experiments
1 ADAS
2 MMSE
3 RAVLT
4
5
6
7
8 FLU
9
10 TRAILS
11
12 LOGMEM
13
14 CLOCK
15
16 BOSNAM
17 ANART
18 DSPAN
19
20 DIGIT

Alzheimer’s disease assessment scale

Mini-mental state exam

TOTAL Total score of the first 5 learning trials
TOT6 Trial 6 total number of words recalled
TOTB Immediately after the fifth learning trial
T30 30 minute delay total number of words recalled
RECOG 30 minute delay recognition
ANIM Animal total score
VEG Vegetable total score
A Trail making test A score
B Trail making test B score
IMMTOTAL Immediate recall
DELTOTAL Delayed recall
DRAW Clock drawing
COPYSCORE Clock copying
Total number correct
ANART total score
For Digit span forward
BAC Digit span backward

Digit symbol substitution

. R
N C Y1, Y
WR (Y, Y) _ > h=1Corr(Yy, Yp)ny G1)

k
2 h=1h

where Y and Y are the ground truth cognitive scores and the
predicted cognitive scores, respectively.

Smaller values of nMSE and rMSE and larger values
of CC and wR indicate better regression performance.
We report the mean and standard deviation based on 10
experimental iterations on different splits of data for all
comparable experiments. A Student’s 7-test at a significance
level of 0.05 is performed to determine whether the
performances difference are significant.

Comparison with Baseline Comparable Methods

In this section, we conduct empirical evaluation for the pro-
posed methods by comparison with two single-task learning
methods: Lasso and Ridge. Both methods were applied
independently to each task, and compared to representative
multi-task learning methods:

1. Multi-task feature learning (MTFL): m@i)n %HY —

XO|F + A1O]2,1.

2. Multi-task feature learning combined with lasso (SGL-
MTFL): min 3[[Y = XOIIZ + 41110121 + 221011

3. Fused lasso regularized multi-task learning (FL-MTL):
min Y — x0|% + A0Z];.

4. Fused group lasso regularized multi-task learning (FGL-
MTL): min Y —x0l% +110Z2|6,,.

5. Fused lasso regularized multi-task feature learning (FL-
MTEL): min 3[|Y = XO|[% + A1[1©ll2,1 + A2 OZ]1.

6. Group lasso regularized multi-task feature learning
(GL-MTFL): min Y — XOl% + Ol +
AM8lG,; -

7. Fusedlassoregularized SGL-MTL (FSGL—MTL):m@%n %

1Y = XOll7 + 211011 +2210Z]i, -
8. Fused group lasso regularized MTFL (FGL-MTFL):
min Y = XOl7 + 1111021 + 221026, -

The average and standard deviation of performance
measures were calculated by 10-fold cross validation on
different splits of data, and are shown in Tables 5 and 6. It
is worth noting that the same training and testing data were
used across experiments for all methods for fair comparison.
Note that all pairwise links between tasks were incorporated
into both the fused lasso and fused group lasso regularized
methods, and the graph was created using only the training
data.

From the experimental results in Tables 5 and 6, we
observe the following:

1. FL-MTFL and FGL-MTFL both demonstrated an
improved performance over the other baseline methods
in terms of nMSE and wR, while FGL-MTFL
performed the best among all competing methods. The
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Neuroinform

t-test results show that the FGL-MTFL significantly
outperforms all the other methods in terms of nMSE
and all the other methods except FL-MTFL in terms
of CC. Thus, simultaneously exploiting the structure
among the tasks and features resulted in significantly
better prediction performance.

The norm of both the fused lasso and fused group lasso
can improve the performance of the traditional MTFL,
which demonstrates that considering the local structure
within the tasks can improve the overall prediction
performance. A fundamental step is to estimate the
true relationships among tasks, thus promoting the most
appropriate information sharing among related tasks
while avoiding the use of information from unrelated
tasks.

We investigated the effect of group penalty in our
model. The traditional MTFL consideres only the spar-
sity of regression coefficients, thus failing to capture the
group structure of features in the data.

CC(MTFL) = 0.666 CC(FGL-MTFL) = 0.667

o MTFL s
50| o FGL-MTFL L

Predict y

15 20 25 30 35 40 45 50 55
Actual y

(a) ADAS.

0. CC(MTFL) = 0.515 CC(FGL-MTFL) = 0.522

7
o MTFL 7
651 o FGL-MTFL ///

0 5 10

Predict y

5 1 1 1 1 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70
Actual y

(c) TOTAL.

Predict y

Predict y

From the Tables 5 and 6, we can find that both
FL-MTFL and FGL-MTFL are better than traditional
MTFL. This is because the assumption in MTFL
is a strict constraint and may affect the flexibility
of the multi-task model as described in “¢2 1-norm”.
The extraction of multiple features to measure the
atrophy of each imaging biomarker can further improve
prediction performance by capturing inherent feature
structures.

GL-MTFL is similar to FGL-MTFL but the regu-
larization term of G j-norm ignore the structure of
tasks. This approach can flexibly take into account
the complex relationships among imaging markers in
a fused lasso regularization rather than relying on a
simple grouping scheme. Moreover, compared with
GL-MTFL, our FGL-MTFL can flexibly consider the
complex relationships among outcomes in a group for-
mat rather than within a simple group lasso scheme.
Overall, FGL-MTFL achieved better performances than

25 30
Actual y
(b) MMSE.

CC(MTFL) = 0.376 CC(FGL-MTFL) = 0.399

40
o FGL-MTFL
35+
30+
25
20} -
HAS
i
151 b
BRI
10+ PRSI
e 7
e
5r o7
e
e
0/ 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Actual y
(d) ANIM.

Fig. 3 Scatter plots of actual versus predicted values of cognitive scores on each fold testing data using MTFL and FBGL-MTL methods based
on MRI features
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FL-MTFL, demonstrating the benefit of employing
group structural information among the features.

4. All compared multi-task learning methods improve
predictive performance over the independent regression
algorithm (Ridge, Lasso, GOSCAR, and ncFGS).
This justifies the motivation to learn multiple tasks
simultaneously.

Additionally, we show the scatter plots for the predicted
values versus the actual values for ADAS, MMSE, TOTAL,
and ANIM for the testing data in the cross-validation in Fig. 3.

To investigate the influence of edge weight on per-
formance, we compared our proposed FGL-MTFL with
an unweighted FGL-MTFL (A1[|®]2,1 + AZanzllw_m —
sign(riu,1)0.1lG,,, ), which only considers the graph topology
of tasks and treats all links equally. The result is shown in
Table 7, and shows obvious improvement with the weighted
FGL-MTFL compared to the unweighted one.

Comparison with the State-of-the-Art MTL Methods

To illustrate how well our FGL-MTFL works by means of
modeling the correlation among the tasks, we comprehen-
sively compared our proposed methods with several popular
state-of-the-art related methods. The representative multi-
task learning algorithms used for comparison include the
following models:

1. Robust multi-Task Feature Learning (RMTL) (Chen
etal. 2011):

RMTL (ming L(X, Y, ®) + A[[Plx + A2lISll2,1,
subjectto ® = P + §), which assumes that the model
® can be decomposed into two components: a shared
feature structure P that captures task relatedness and a
group-sparse structure S that can detect outliers.

2. Clustered multi-Task Learning (CMTL) (Zhou et al.
2011):

CMTL (ming pr.yra—;, L(X, Y, ©) 4+ A (Tr(OT
Q) — Tr((MTOTOM)) + 1MTr(OTO), where M €
R°*K is an orthogonal cluster indicator matrix, and the
tasks are clustered into ¢ < k clusters) incorporates a
regularization term to induce clustering between tasks
and then shares information only to tasks belonging to
the same cluster. In CMTL, the number of clusters is set
to 11 because the 20 tasks belong to 11 sets of cognitive
functions.

3. Trace-Norm Regularized multi-Task Learning (Trace)
(Ji and Ye 2009): Assumes that all models share a com-
mon low-dimensional subspace (ming L(X,Y,®) +
MO

4. Sparse regularized multi-task learning formulation
(SRMTL) (Zhou ):

SRMTL (ming L(X,Y,®) + A ||®Z||%p + A2
1©]l1 , where Z € R¥**) contains two regularization

Table 7 The influence of weighting scheme of fused group lasso norm in FGL-MTFL in terms of CC and wR

TRAILS

FLU

RAVLT
TOTAL

MMSE

ADAS

Method

TOTB T30 RECOG ANIM VEG

TOT6

0.478+0.098
0.481£0.095

0.41640.085
0.419+0.086

0.5104+0.120  0.39940.120  0.3814+0.090  0.50740.091

0.514£0.110  0.42940.121

0.29540.095
0.32440.069

0.517£0.116  0.4923+0.128

0.542+0.055
0.522+0.114  0.499+0.121

0.54940.068

unweighed  0.66940.062

0.505+0.087

0.39940.081

0.668+0.068

weighted

wR

DIGIT

DSPAN
FOR

ANART

BOSNAM

CLOCK
DRAW

LOGMEM

Method

BAC

COPYSCOR

IMMTOTAL DELTOTAL

unweighed  0.508+0.086 0.519£0.099

0.090£0.132  0.471£0.113  0.107£0.085 0.086+0.114  0.141£0.098  0.479+0.065 0.397+0.052*
0.473+0.089  0.13740.082

0.25240.092

0.3414+0.077
0.40840.083

0.484+0.070  0.42140.052

0.096+0.090 0.218+0.113

0.514+0.084  0.533£0.094

weighted

The first 20 columns are CC and the last one is wR

The bold value indicates the best performance
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Neuroinform

processes: (1) all tasks are regularized by their mean
value, and therefore knowledge obtained from one
task can be utilized by other tasks via the mean
value; (2) sparsity is enforced in the learning with £;

norm.

5. Multi-task Sparse Structure Learning from tasks param-

eters (p-MSSL) (Goncalves et al. 2014):

p-MSSL (ming g0 L(X,Y.®) — Llog|Q| +
Te(OQOT) + 41|21 + 22]|©||1, where Q € RF*k i a

matrix that captures the task relationship structure.

6. Group-Sparse Multi-task Regression and Feature Selec-

tion (G-SMuRFS) (Yan et al. 2015):

G-SMuRFS (ming L(X,Y,0) + A[O]21 +

A2 Z?:l w; /Zjeg, 6;.1l2) takes into account coupled

features and group sparsity across tasks. Parameters
for these three methods are set following the same
approach as that used in the baseline comparable meth-
ods. Tables 8 and 9 show the results of the comparable

MTL methods in terms of rMSE, CC, nMSE and wR.

7. Multi-task relationship learning (MTRL) (Zhang and

Yeung 2012b):

MTRL (minw.p.0 Y 71— nl_, > imni(y — wlxt —
b)? + HaewWwT) + Z2uwae'wT), st Q@ >
0,tr(2) = 1) can simultaneously model positive
task correlation, describe negative task correlation, and
identify outlier tasks based on the same underlying

principle.

Fig.4 Correlation matrix

@ Springer
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From the experimental results in Tables 8 and 9, we
observe that the proposed method significantly outperforms
the other recently developed algorithms. Specifically, the
t-test results indicate that FGL-MTFL significantly outper-
forms all other methods significantly in terms of CC and
all but FL-MTRL in terms of nMSE. Compared with the
other multi-task learning that utilize different assumptions,
G-SMuRFS and our proposed methods, both multi-task fea-
ture learning methods with sparsity-inducing norms, have
an advantage. Since not all the brain regions are associated
with AD, many of the features are irrelevant and redundant.
Thus, sparse-based MTL methods involving FGL-MTFL
and G-SMuRFS are more appropriate to predict cognitive
measures with better performance than the non-sparse based
MTL methods. Unlike G-SMuRFS, the group regulariza-
tion Gy, 1-norm in FGL-MTFL decouples the group sparse
regularization across tasks to provide more flexibility.

Identification of Correlation among Cognitive
Outcomes

A fundamental component of our FGL-MTFL is to estimate
the relationship structure among tasks, thus promoting
appropriate information sharing among related tasks. In
this section, we investigate and evaluate the estimated task
relationships. Figure 4 shows the normalized estimated
correlation matrix Z.
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Using the previous results obtained by our FGL-MTFL,
the constructed graph G includes all pairwise links for
each pair of tasks. The correlation of these links may be
weak or not actually correlated due to bad estimation of
the correlation matrix. To clearly analyze the influence
of the estimated task relationships to the prediction
performance of cognitive outcomes, we constructed graphs
G that vary the value of the threshold t based on the
estimated correlation matrix Z. The range of the 7 value is
0.1, 0.3, 0.5, and 0.7. The graphs of these four examples
are shown in Fig. 5. In this experiment, rather than including
all pairwise links, a specific threshold value was applied
to the correlation matrix Z, and the performance with
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different threshold values is presented in Table 10. In this
case, by thresholding the estimated correlation matrix with
a higher 7, we can construct a sparse undirected graph to
represent only the most reliable correlation. From the data
shown in Fig. 5, we can find that with an increase in the
threshold value, the graph of tasks becomes less dense.
When t = 0.1, only one link is removed, and when t
increases to 0.3 and 0.5, the numbers of remaining links are
only 133 and 48, respectively. When t = 0.7, there are only
eight highly correlated cognitive scores. We found these
remaining cognitive outcomes (including ADAS, MMSE,
and RAVLT) are the most commonly used in the multi-
task learning to predict cognitive outcomes (Yan et al. 2013,
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s’ LOGMEM

Fig.6 The correlation graph when 7 = 0.5

2015; Wan et al. 2012; Li et al. 2012). Moreover, as shown
in the Fig. 5d, ADAS is the most important of the cognitive
outcome tests, with the most edges to other tasks, especially
when the threshold is large, i.e., 13 links remains when
t = 0.5 and 4 links remains when 7 = 0.7.

Additionally, we evaluated the performance of FL-
MTL, FGL-MTL and FGL-MTFL methods in response
to changing the thresholds in terms of CC and wR, as
presented in Table 10. The symbol “-” indicates that
no threshold was used. The performance of both FL-
MTL and FGL-MTL increased with increased threshold
value. However, FGL-MTFL achieved better results as the
threshold value decreased. For values of 7 less than 0.3,
FGL-MTFL obtains the best result and is stable, which
indicates that many edges do not contribute to performance
in Fig. 5a.

In order to investigate the correlation of multiple
cognitive tests, we constructed a graph to show the
estimated correlation of inter-cognitive assessment tests,
such as ADAS and MMSE, and intra-cognitive assessment
tests, such as TOTAL and TOT6 in RAVLT. From Fig. 6
and Table 11, we can observe strong correlation of all
intra cognitive assessment tests. Correlation analysis of

Table 11 The edge number of nodes (tasks) when v = 0.5

Table 12 Top 10 selected ROIs by MTFL, GL-MTFL and FGL-MTFL

Numbers  ROIs
MTFL GL-MTFL FGL-MTFL
1 L.MidTemporal L.MidTemporal = L.MidTemporal
2 R.LatVent R.LatVent R.LatVent
3 R.InfParietal R.InfParietal R.InfParietal
4 R.Entorhinal R.Entorhinal WMHypolnt
5 R.PostCing R.PostCing R.Entorhinal
6 L.SupFrontal WMHypolnt L.SupFrontal
7 WMHypolnt L.SupFrontal L.Hippocampus
8 L.Hippocampus  L.Hippocampus  R.PostCing
9 R.BanksSTS L.SupParietal L.InfParietal
10 OpticChiasm R.BanksSTS L.IsthmCing

inter-cognitive assessment tests shows that ADAS is an
important test with strong correlations with other tests.

Identification of MRI Biomarkers

Key goals of studies of Alzheimer’s disease are better cogni-
tive score prediction and identification of which brain areas
are more affected by the disease to help diagnose early
stages of the disease and determine how it spreads. One
focus of this work was the identification of MRI biomarkers.
Our FGL-MTFL is a group sparse model that can identify
a compact set of relevant neuroimaging biomarkers at the
region level due to the group lasso on the features, allow-
ing better interpretability of the brain region. The top ten
selected MRI brain regions are shown in Table 12, as deter-
mined by calculating the overall weights for all cognitive
tasks.

Some important brain regions are identified by our
FGL-MTFL (see Fig. 7), such as Middle Temporal (Yan
et al. 2015; Xu et al. 2016; Visser et al. 2002; Zhu et al.
2016), Hippocampus (Zhu et al. 2016) and Entorhinal (Yan
et al. 2015), regions that are highly relevant to cognitive
impairment. These findings are in accordance with current
understanding of the pathological pathway of AD, and
reports that these identified brain regions are highly related
to clinical functions. For example, the hippocampus is

Tasks ADAS MMSE RAVLT FLU TRAILS LOGMEM CLOCK BOSNAM ANART DSPAN DIGIT
pointsinset 1 1 5 2 2 2 1 1 2 1
Number of edges

inside - - 7 - - -
outside 13 5 12 0 0 0 0 0

sum 13 5 19 5 3 0 0 0

@ Springer
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(a) Left-Hemisphere (outside): Left
InfParietal, Left Midlemporal, Left
SupFrontal.

(c) Right-Hemisphere (outside): Right
InfParietal.

(b) Left-Hemisphere (inside): Left
SupFrontal, Left IsthmCing.

.

(d) Right-Hemisphere (inside): Right
PostCing, Right Entorhinal.

(e) Subcortical: Left Hippocampus, Right LatVent, WMHypolnt.

Fig.7 [Best viewed in color] Plots show the top 10 ROI’s selected by FGL-MTFL. These were the most relevant areas for predicting all cognitive

scores jointly

located in the temporal lobe of the brain and participates in
memory and spatial navigation. The Entorhinal cortex is the
first area of the brain to be affected in Alzheimer’s disease,
and is typically subjected to the most heavy damage with
the progression of Alzheimer’s disease (Hoesen et al. 1991).

Conclusion

Many clinical/cognitive measures have been designed to
evaluate patient cognitive status for use as criteria for

@ Springer

clinical diagnosis of probable AD. In this paper, we propose
a multi-task learning framework for predictive modeling of
cognitive measures based on MRI data from ADNI. The
existing MTL approach neglects the relationships between
outcomes and between features. We consider the multi-
task learning problem assuming unequal correlation of the
tasks and effects of different correlated tasks on different
brain regions. Based on the intuitive motivation that tasks
should be related to a group of features, we exploited the
global task-common structure as well as task-ROI specific
structure, and present a novel fused group lasso regularized
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multi-task learning method (FGL-MTFL). Experiments and
comparisons of this model with baseline methods illustrate
that FGL-MTFL offers consistently better performance than
several currently applied multi-task learning algorithms.
In the current work, only a priori group information is
incorporated into the multi-task predictive model, but there
is no ability to automatically learn the feature groups. In
future work, we will investigate other structures in features,
such as graph structure, which can provide additional
insights to understand and interpret data. Our current
work is based on linear methods, but kernel methods
can model the cognitive scores as nonlinear functions
of neuroimaging measures. Recently, many kernel-based
classification or regression methods with faster optimization
speed or stronger generalization performance have been
investigated by theoretically and experimentally. Our future
work will focus on kernel-based multi-task learning to better
capture the complex but more flexible relationship between
cognitive scores and the neuroimaging measures.
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